Library of Congress Cataloguing-in-Publication Data
(Revised for vol. 5)

NASA historical data book.

(The NASA historical series) (NASA SP ; 4012)
Vol. 5 in series: The NASA history series.
Includes bibliographical references and indexes.
VI. Series. VII. Series. VIII. Series: NASA SP ; 4012.
CONTENTS

List of Figures and Tables ...v
Preface and Acknowledgments ..xi
Chapter One: Introduction ..1
Chapter Two: Launch Systems ...11
Chapter Three: Space Transportation/Human Spaceflight105
Chapter Four: Space Science ...361
Index ..527
About the Compiler ..535
The NASA History Series ...537
LIST OF FIGURES AND TABLES

Chapter One: Introduction

Figure 1–1 Program Office Functional Areas 7

Chapter Two: Launch Systems

Figure 2–1 NASA Space Transportation System (1988) 14
Figure 2–2 Top-Level Launch Vehicle Organizational Structure 16
Figure 2–3 Office of Space Transportation (as of October 1979) 16
Figure 2–4 Code M/Code O Split (as of February 1980) 17
Figure 2–5 Code M Merger (as of October 1982) 18
Figure 2–6 Office of Space Flight 1986 Reorganization 20
Figure 2–7 Expendable Launch Vehicle Success Rate 24
Figure 2–8 Atlas-Centaur Launch Vehicle 30
Figure 2–9 Delta 3914 31
Figure 2–10 Delta 3920/PAM-D 31
Figure 2–11 Scout-D Launch Vehicle (Used in 1979) 32
Figure 2–12 External Tank 38
Figure 2–13 Solid Rocket Booster 41
Figure 2–14 Solid Rocket Motor Redesign Schedule 44
Figure 2–15 Inertial Upper Stage 48
Figure 2–16 Transfer Orbit Stage 50
Figure 2–17 Orbital Maneuvering Vehicle 55

Table 2–1 Appropriated Budget by Launch Vehicle and Launch-Related Component 59
Table 2–2 Atlas E/F Funding History 63
Table 2–3 Atlas-Centaur Funding History 64
Table 2–4 Delta Funding History 65
Table 2–5 Scout Funding History 66
Table 2–6 Space Shuttle Main Engine Funding History 67
Table 2–7 Solid Rocket Boosters Funding History 69
Table 2–8 External Tank Funding History 71
Table 2–9 Upper Stages Funding History 73
Table 2–10 Orbital Maneuvering Vehicle Funding History 75
Table 2–11 Tethered Satellite System Funding History 76
Table 2–12 Advanced Programs/Planning Funding History 77
Table 2–13 ELV Success Rate by Year and Launch Vehicle for NASA Launches 78
Table 2–14 NASA Atlas E/F Vehicle Launches 79
Table 2–15 Atlas E/F Characteristics 80
Table 2–16 NASA Atlas-Centaur Vehicle Launches 82
Table 2–17 Atlas-Centaur Characteristics 83
Table 2–18 Chronology of Delta Vehicle Launches 84
Table 2–19 Delta 2914 Characteristics 86
Table 2–20 Delta 3910/3914 Characteristics 87
Table 2–21 Delta 3920/3924 Characteristics 88
Table 2–22 NASA Scout Launches 89
Table 2–23 Scout Characteristics (G-1) 90
Table 2–24 STS-Launched Missions 91
Table 2–25 Space Shuttle Main Engine Characteristics 93
Table 2–26 Main Engine Development and Selected Events 94
Table 2–27 Space Shuttle External Tank Characteristics 95
Table 2–28 External Tank Development and Selected Events 96
Table 2–29 Space Shuttle Solid Rocket Booster Characteristics 97
Table 2–30 Chronology of Selected Solid Rocket Booster Development Events 98
Table 2–31 Upper Stage Development 101
Table 2–32 Transfer Orbit Stage Characteristics 103

Chapter Three: Space Transportation/Human Spaceflight

Figure 3–1 NSTS Organization 110
Figure 3–2 Safety, Reliability, and Quality Assurance Office Organization 113
Figure 3–3 Space Station Program Management Approach 116
Figure 3–4 Office of Space Station Organization (December 1986) 117
Figure 3–5 Space Shuttle Orbiter 124
Figure 3–6 Typical STS Flight Profile 132
Figure 3–7 Types of Intact Aborts 138
Figure 3–8 Pallet Structure and Panels 149
Figure 3–9 Spacelab Igloo Structure 149
Figure 3–10 Insulating Materials 159
Figure 3–11 STS-1 Entry Flight Profile 163
Figure 3–12 Continuous Flow Electrophoresis System Mid-deck Gallery Location 170
Figure 3–13 STS-5 Payload Configuration 171
Figure 3–14 Payload Flight Test Article 173
Figure 3–15 Manned Maneuvering Unit 175
Figure 3–16 Solar Max On-Orbit Berthed Configuration 176
Figure 3–17 Long Duration Exposure Facility Configuration 177
Figure 3–18 STS 51-A Cargo Configuration 179
Figure 3–19 STS 61-A Cargo Configuration 183
Figure 3–20 EASE/ACCESS Configuration 184
Figure 3–21 Integrated MSL-2 Payload 185
Figure 3–22 Tracking and Data Relay Satellite On-Orbit Configuration 186
Figure 3–23 STS 51-L Data and Design Analysis Task Force 211
Figure 3–24 Space Shuttle Return to Flight 213
Figure 3–25 Space Shuttle Return to Flight Milestones 220
Figure 3–26 Field Joint Redesign 221
Figure 3–27 Extendible Rod Escape System 226
Figure 3–28 Availability of Fourth Orbiter 228
Figure 3–29 System Integrity Assurance Program 229
Figure 3–30 Major Orbiter Modifications 230
Figure 3–31 Dual Keel Final Assembly Configuration 244
Figure 3–32 Revised Baseline Configuration (1987), Block I 245
Figure 3–33 Enhanced Configuration, Block II 245
Figure 3–34 Habitation Module 247
Figure 3–35 Flight Telerobotic Servicer 249
Figure 3–36 Photovoltaic Module 249
Figure 3–37 Mobile Servicing System and Special Purpose Dextorous Manipulator 250
Figure 3–38 Columbus Attached Laboratory 251
Figure 3–39 Columbus Free-Flying Laboratory 252
Figure 3–40 Columbus Polar Platform 253
Figure 3–41 Japanese Experiment Module 253

Table 3–1 Total Human Spaceflight Funding History 256
Table 3–2 Programmed Budget by Budget Category 259
Table 3–3 Orbiter Funding History 260
Table 3–4 Orbiter Replacement Funding History 261
Table 3–5 Launch and Mission Support Funding History 262
Table 3–6 Launch and Landing Operations Funding History 264
Table 3–7 Spaceflight Operations Program Funding History 265
Table 3–8 Flight Operations Funding History 266
Table 3–9 Spacelab Funding History 267
Table 3–10 Space Station Funding History 268
Table 3–11 Orbiter Characteristics 269
Table 3–12 Typical Launch Processing/Terminal Count Sequence 271
Table 3–13 Space Shuttle Launch Elements 272
Table 3–14 Mission Command and Control Positions and Responsibilities 273
Table 3–15 Shuttle Extravehicular Activity 274
Table 3–16 STS-1–STS-4 Mission Summary 275
Table 3–17 STS-1 Mission Characteristics 277
Table 3–18 STS-2 Mission Characteristics 279
Table 3–19 STS-3 Mission Characteristics 281
Table 3–20 STS-4 Mission Characteristics 283
Table 3–21 STS-5–STS-27 Mission Summary 285
Table 3–22 STS-5 Mission Characteristics 294
Table 3–23 STS-6 Mission Characteristics 296
Table 3–24 STS-7 Mission Characteristics 298
Table 3–25 STS-8 Mission Characteristics 300
Table 3–26 STS-9 Mission Characteristics 302
Table 3–27 STS 41-B Mission Characteristics 303
Table 3–28 STS 41-C Mission Characteristics 306
Table 3–29 STS 41-D Mission Characteristics 307
Table 3–30 STS 41-G Mission Characteristics 309
Table 3–31 STS 51-A Mission Characteristics 312
Table 3–32 STS 51-C Mission Characteristics 313
Table 3–33 STS 51-D Mission Characteristics 314
Table 3–34 STS 51-B Mission Characteristics 317
Table 3–35 STS 51-G Mission Characteristics 318
Table 3–36 STS 51-F Mission Characteristics 321
Table 3–37 STS 51-I Mission Characteristics 323
Table 3–38 STS 51-J Mission Characteristics 324
Table 3–39 STS 61-A Mission Characteristics 325
Table 3–40 STS 61-B Mission Characteristics 326
Table 3–41 STS 61-C Mission Characteristics 328
Table 3–42 STS 51-L Mission Characteristics 333
Table 3–43 STS-26 Mission Characteristics 334
Table 3–44 STS-27 Mission Characteristics 337
Table 3–45 Return to Flight Chronology 338
Table 3–46 Sequence of Major Events of the Challenger Accident 342
Table 3–47 Chronology of Events Prior to Launch of Challenger (STS 51-L) Related to Temperature Concerns 345
Table 3–48 Schedule for Implementation of Recommendations (as of July 14, 1986) 354
Table 3–49 Revised Shuttle Manifest (as of October 3, 1986) 356
Table 3–50 Space Station Work Packages 359
Table 3–51 Japanese Space Station Components 360

Chapter Four: Space Science

Figure 4–1 Office of Space Science (Through November 1981) 369
Figure 4–2 Office of Space Science and Applications (Established November 1981) 370
Figure 4–3 HEAO High-Spectral Resolution Gamma Ray Spectrometer 376
Figure 4–4 HEAO Isotopic Composition of Primary Cosmic Rays 376
Figure 4–5 HEAO Heavy Nuclei Experiment 377
Figure 4–6 Solar Maximum Instruments 378
Figure 4–7 Solar Mesospheric Explorer Satellite Configuration 380
Figure 4–8 Altitude Regions to Be Measured by Solar Mesospheric Explorer Instruments 381
Figure 4–9 Infrared Astronomy Satellite Configuration 382
Figure 4–10 Exploded View of the European X-Ray Observatory Satellite 385
Figure 4–11 Distortion of Earth’s Magnetic Field 387
Figure 4–12 Spartan 1 389
Figure 4–13 Plasma Diagnostics Package Experiment Hardware 390
Figure 4–14 Spartan Halley Configuration 391
Figure 4–15 San Marco D/L Spacecraft 393
Figure 4–16 Spacelab 1 Module Experiment Locations (Port Side) 395
Figure 4–17 Spacelab 1 Module Experiment Locations (Starboard Side) 396
Figure 4–18 Spacelab 1 Pallet Experiment Locations 397
Figure 4–19 Spacelab 3 Experiment Module Layout (Looking Down From the Top) 398
Figure 4–20 Spacelab 2 Configuration 398
Figure 4–21 OSS-1 Payload Configuration 400
Figure 4–22 Hubble Space Telescope 404
Figure 4–23 Compton Gamma Ray Observatory Configuration 405
Figure 4–24 Extreme Ultraviolet Explorer Observatory 407
Figure 4–25 Two Phases of the Extreme Ultraviolet Explorer Mission 408
Figure 4–26 ROSAT Flight Configuration 409
Figure 4–27 Cosmic Background Explorer Observatory (Exploded View) 411
Figure 4–28 Cosmic Background Explorer Orbital Alignments 412
Figure 4–29 Magellan Spacecraft Configuration 417
Figure 4–30 Magellan Orbit 418
Figure 4–31 Galileo Mission 419
Figure 4–32 Galileo Spacecraft 420
Figure 4–33 Ulysses Spacecraft Configuration 421

Table 4–1 Total Space Science Funding History 422
Table 4–2 Programmed Budget by Budget Category 425
Table 4–3 High Energy Astronomy Observatories Development Funding History 426
Table 4–4 Solar Maximum Mission Development Funding History 426
Table 4–5 Space Telescope Development Funding History 426
Table 4–6 Solar Polar Mission Development Funding History 427
Table 4–7 Gamma Ray Observatory Development Funding History 427
Table 4–8 Shuttle/Spacelab Payload Development Funding History 428
Table 4–9 Explorer Development Funding History 429
Table 4–10 Physics and Astronomy Mission Operations and Data Analysis Funding History 429
Table 4–11 Physics and Astronomy Research and Analysis Funding History 430
Table 4–12 Physics and Astronomy Suborbital Programs Funding History 430
Table 4–13 Space Station Planning Funding History 431
Table 4–14 Jupiter Orbiter/Probe and Galileo Programs Funding History 431
Table 4–15 Venus Radar Mapper/Magellan Funding History 431
Table 4–16 Global Geospace Science Funding History 432
Table 4–17 International Solar Polar Mission/Ulysses Development Funding History 432
Table 4–18 Mars Geoscience/Climatology Orbiter Program Funding History 432
Table 4–19 Lunar and Planetary Mission Operations and Data Analysis Funding History 433
Table 4–20 Lunar and Planetary Research and Analysis Funding History 433
Table 4–21 Life Sciences Flight Experiments Program Funding History 434
Table 4–22 Life Sciences/Vestibular Function Research Funding History 434
Table 4–23 Life Sciences Research and Analysis Funding History 435
Table 4–24 Science Missions (1979–1988) 436
Table 4–25 Spacecraft Charging at High Altitudes Characteristics 437
Table 4–26 UK-6 (Ariel) Characteristics 439
Table 4–27 HEAO-3 Characteristics 441
Table 4–28 Solar Maximum Mission 442
Table 4–29 Dynamics Explorer 1 and 2 Characteristics 444
Table 4–30 Solar Mesospheric Explorer Instrument Characteristics 446
Table 4–31 Solar Mesospheric Explorer Characteristics 447
Table 4–32 Infrared Astronomy Satellite Characteristics 449
Table 4–33 European X-Ray Observatory Satellite Characteristics 451
Table 4–34 Shuttle Pallet Satellite-01 Characteristics 452
Table 4–35 Hilat Characteristics 453
Table 4–36 Charge Composition Explorer Characteristics 454
Table 4–37 Ion Release Module Characteristics 455
Table 4–38 United Kingdom Subsatellite Characteristics 456
Table 4–39 Spartan 1 Characteristics 457
Table 4–40 Plasma Diagnostics Package Characteristics 458
Table 4–41 Spartan 203 Characteristics 459
Table 4–42 Polar BEAR Characteristics 460
Table 4–43 San Marco D/L Characteristics 461
Table 4–44 Chronology of Spacelab Development 462
Table 4–45 Spacelab 1 Experiments 480
Table 4–46 Spacelab 3 Experiments 499
Table 4–47 Spacelab 2 Experiments 505
Table 4–48 Spacelab D-1 Experiments 512
Table 4–49 OSS-1 Investigations 516
Table 4–50 Hubble Space Telescope Development 518
Table 4–51 Ulysses Historical Summary 525
PREFACE AND ACKNOWLEDGMENTS

In 1973, NASA published the first volume of the NASA Historical Data Book, a hefty tome containing mostly tabular data on the resources of the space agency between 1958 and 1968. There, broken into detailed tables, were the facts and figures associated with the budget, facilities, procurement, installations, and personnel of NASA during that formative decade.

This fifth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of four critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the development and operation of launch systems, space transportation, human spaceflight, and space science during this era. As such, it contains in-depth statistical information about the early Space Shuttle program through the return to flight in 1988, the early efforts to build a space station, the development of new launch systems, and the launching of seventeen space science missions.

A companion volume will appear late in 1999, documenting the space applications, support operations, aeronautics, and resources aspects of NASA during the period between 1979 and 1988.

There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book. Stephen J. Garber helped in the management of the project and handled final proofing and publication. M. Louise Alstork edited and prepared the index of the work. Nadine J. Andreassen of the NASA History Office performed editorial and proofreading work on the project; and the staffs of the NASA Headquarters Library, the Scientific and Technical Information Program, and the NASA Document Services Center provided assistance in locating and preparing for publication the documentary materials in this work. The NASA Headquarters Printing and Design Office developed the layout and handled printing. Specifically, we wish to acknowledge the work of Jane E. Penn, Jonathan L. Friedman, Joel Vendette, Patricia M. Talbert, and Kelly L. Rindfusz for their editorial and design work. In addition, Michael Crnkovic, Stanley Artis, and Jeffrey Thompson saw the book through the publication process. Thanks are due them all.