SP-4402 Origins of NASA Names

 

SECTION IV

MANNED SPACE FLIGHT

 


[
96]

View of the moon from Apollo 8.

View of the moon from Apollo 8.

 

[97] NASA's first four manned spaceflight projects were Mercury, Gemini, Apollo, and Skylab. As the first U.S. manned spaceflight project, Project Mercury-which included two manned suborbital flights and four orbital flights-"fostered Project Apollo and fathered Project Gemini."1 The second manned spaceflight project initiated was the Apollo manned lunar exploration program. The national goal of a manned lunar landing in the 1960s was set forth by President John F. Kennedy 25 May 1961:

 

. . . I believe that this nation should commit itself to achieving the goals, before this decade is out, of landing a man on the moon and returning him safely to earth. No single space project in this period will be more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish.... But in a very real sense, it will not be one man going to the moon-if we make this judgment affirmatively, it will be an entire nation.2

 

The interim Project Gemini, completed in 1966, was conducted to provide spaceflight experience, techniques, and training in preparation for the complexities of Apollo lunar-landing missions. Project Skylab was originality conceived as a program to use hardware developed for Project Apollo in related manned spaceflight missions; it evolved into the Orbital Workshop program with three record-breaking missions in 1973-1974 to man the laboratory in earth orbit, producing new data on the sun, earth resources, materials technology, and effects of space on man.

The Apollo-Soyuz Test Project was an icebreaking effort in international cooperation. The United States and the U.S.S.R. were to fly a joint mission in 1975 to test new systems that permitted their spacecraft to dock with each other in orbit, for space rescue or joint research.

As technology and experience broadened man's ability to explore and use space, post-Apollo planning called for ways to make access to space more practical, more economical, nearer to routine. Early advanced studies grew into the Space Shuttle program. Development of the reusable space transportation system, to be used for most of the Nation's manned and unmanned missions in the 1980s, became the major focus of NASA's program for the 1970s. European nations cooperated by undertaking development of Spacelab, a pressurized, reusable laboratory to be flown in the Shuttle.

 


[
98]

Apollo 11 command and service module being readied for transport to the Vehicle Assembly Building at Kennedy Space Center

Apollo 11 command and service module being readied for transport to the Vehicle Assembly Building at Kennedy Space Center, in left photo. Apollo 11 Astronaut Edwin E. Aldrin, Jr., below, setting up an experiment on the moon next to the lunar module. Opposite: the Greek god Apollo (courtesy of George Washington University).

the Greek god Apollo (courtesy of George Washington University)

.

Apollo 11 Astronaut Edwin E. Aldrin, Jr. setting up an experiment on the moon next to the lunar module

 

[99] APOLLO. In July 1960 NASA was preparing to implement its long-range plan beyond Project Mercury and to introduce a manned circumlunar mission project-then unnamed-at the NASA/Industry Program Plans Conference in Washington. Abe Silverstein, Director of Space Flight Development, proposed the name "Apollo" because it was the name of a god in ancient Greek mythology with attractive connotations and the precedent for naming manned spaceflight projects for mythological gods and heroes had been set with Mercury.1 Apollo was god of archery, prophecy, poetry, and music, and most significantly he was god of the sun. In his horse-drawn golden chariot, Apollo pulled the sun in its course across the sky each day.2 NASA approved the name and publicly announced "Project Apollo" at the July 28-29 conference.3

Project Apollo took new form when the goal of a manned lunar landing was proposed to the Congress by President John F. Kennedy 25 May 1961 and was subsequently approved by the Congress. It was a program of three-man flights, leading to the landing of men on the moon. Rendezvous and docking in lunar orbit of Apollo spacecraft components were vital techniques for the intricate flight to and return from the moon.

The Apollo spacecraft consisted of the command module, serving as the crew's quarters and flight control section; the service module, containing propulsion and spacecraft support systems; and the lunar module, carrying [100] two crewmen to the lunar surface, supporting them on the moon, and returning them to the command and service module in lunar orbit. Module designations came into use in 1962, when NASA made basic decisions on the flight mode (lunar orbit rendezvous), the boosters, and the spacecraft for Project Apollo. From that time until June 1966, the lunar module was called "lunar excursion module (LEM)." It was renamed by the NASA Project Designation Committee because the word "excursion" implied mobility on the moon and this vehicle did not have that capability.4 The later Apollo flights, beginning with Apollo 15, carried the lunar roving vehicle (LRV), or "Rover," to provide greater mobility for the astronauts while on the surface of the moon.

Beginning with the flight of Apollo 9, code names for both the command and service module (CSM) and lunar module (LM) were chosen by the astronauts who were to fly on each mission. The code names were: Apollo 9-"Gumdrop" (CSM), "Spider" (LM); Apollo 10-"Charlie Brown" (CSM), "Snoopy" (LM); Apollo 11-"Columbia" (CSM), "Eagle" (LM); Apollo 12-"Yankee Clipper" (CSM), "Intrepid" (LM); Apollo 13-"Odyssey" (CSM), "Aquarius" (LM); Apollo 14-"Kitty Hawk" (CSM), "Antares" (LM); Apollo 15-"Endeavour" (CSM), "Falcon" (LM); Apollo 16-"Casper" (CSM), "Orion" (LM); Apollo 17-"America" (CSM); "Challenger" (LM).

The formula for numbering Apollo missions was altered when the three astronauts scheduled for the first manned flight lost their lives in a flash fire during launch rehearsal 27 January 1967. In honor of Astronauts Virgil I. Grissom, Edward H. White II, and Roger B. Chaffee, the planned mission was given the name "Apollo l " although it was not launched. Carrying the prelaunch designation AS-204 for the fourth launch in the Apollo Saturn IB series, the mission was officially recorded as "First manned Apollo Saturn flight-failed on ground test. "

Manned Spacecraft Center Deputy Director George M. Low had urged consideration of the request from the astronauts' widows that the designation "Apollo l"-used by the astronauts publicly and included on their insignia-be retained. NASA Headquarters Office of Manned Space Flight therefore recommended the new numbering, and the NASA Project Designation Committee announced approval 3 April 1967.

The earlier, unmanned Apollo Saturn IB missions AS-201, AS-202, and AS-203 were not given "Apollo" flight numbers and no missions were named "Apollo 2" and "Apollo 3." The next mission flown, the first Saturn V flight (AS-501, for Apollo Saturn V No. 1), skipped numbers....

 


[
101]

Lunar Rover parked on the Moon during the Apollo 15 mission.

Lunar Rover parked on the Moon during the Apollo 15 mission.

 

....2 and 3 to become Apollo 4 after launch into orbit 9 November 1967. Subsequent flights continued the sequence through 17.5

The Apollo program carried the first men beyond the earth's field of gravity and around the moon on Apollo 8 in December 1968 and landed the first men on the moon in Apollo 11 on 20 July 1969. The program concluded with Apollo 17 in December 1972 after putting 27 men into lunar orbit and 12 of them on the surface of the moon. Data, photos, and lunar samples brought to earth- by the astronauts and data from experiments they left on the moon-still transmitting data in 1974-began to give a picture of the moon's origin and nature, contributing to understanding of how the earth had evolved.

 

APOLLO-SOYUZ TEST PROJECT (ASTP). The first international manned space project, the joint U.S.-U.S.S.R. rendezvous and docking mission took its name from the spacecraft to be used, the American Apollo and the Soviet Soyuz.

On 15 September 1969, two months after the Apollo 11 lunar landing mission, the President's Space Task Group made its recommendations on the future U.S. space program. One objective was broad international...

 


[
102]

The Apollo spacecraft approaches the Soyuz for docking in orbit, in the artist's conception

 

Cosmonaut Aleksey A. Leonov and Astronaut Donald K. Slayton check out the docking module in a 1974 training session

The Apollo spacecraft approaches the Soyuz for docking in orbit, in the artist's conception at top. Cosmonaut Aleksey A. Leonov and Astronaut Donald K. Slayton check out the docking module in a 1974 training session.

 

[103] ...participation, and President Nixon included this goal in his March 1970 Space Policy Statement. The President earlier had approved NASA plans for increasing international cooperation in an informal meeting with Secretary of State William P. Rogers, Presidential Assistant for National Security Affairs Henry A. Kissinger, and NASA Administrator Thomas 0. Paine aboard Air Force One while flying to the July Apollo 11 splashdown.1

The United States had invited the U.S.S.R. to participate in experiments and information exchange over the past years. Now Dr. Paine sent Soviet Academy of Sciences President Mstislav V. Keldysh a copy of the U.S. post-Apollo plans and suggested exploration of cooperative programs. In April 1970 Dr. Paine suggested, in an informal meeting with Academician Anatoly A. Blagonravov in New York, that the two nations cooperate on astronaut safety, including compatible docking equipment on space stations and shuttles to permit rescue operations in space emergencies. Further discussions led to a 28 October 1970 agreement on joint efforts to design compatible docking arrangements. Three working groups were set up. Agreements on further details were reached in Houston, Texas, 21-25 June 1971 and in Moscow 29 November-6 December 1971. NASA Deputy Administrator George M. Low and a delegation met with a Soviet delegation in Moscow 4-6 April 1972 to draw up a plan for docking a U.S. Apollo spacecraft with a Russian Soyuz in earth orbit in 1975.2

Final official approval came in Moscow on 24 May 1972. U.S. President Nixon and U.S.S.R. Premier Aleksey N. Kosygin signed the Agreement Concerning Cooperation in the Exploration and Use of Outer Space for Peaceful Purposes, including development of compatible spacecraft docking systems to improve safety of manned space flight and to make joint scientific experiments possible. The first flight to test the systems was to be in 1975, with modified Apollo and Soyuz spacecraft. Beyond this mission, future manned spacecraft of the two nations would be able to dock with each other.3

During work that followed, engineers at Manned Spacecraft Center (renamed Johnson Space Center in 1973) shortened the lengthy "joint rendezvous and docking mission" to "Rendock," as a handy project name. But the NASA Project Designation Committee in June 1972 approved the official designation as "Apollo Soyuz Test Project (ASTP)," incorporating the names of the U.S. and U.S.S.R. spacecraft. The designation was sometimes written "Apollo/Soyuz Test Project," but the form "Apollo Soyuz Test Project" was eventually adopted. NASA and the Soviet Academy of Sciences announced the official ASTP emblem in March 1974. The circular emblem displayed the English word "Apollo" and the Russian [104] word " Soyuz" on either side of a center globe with a superimposed silhouette of the docked spacecraft.4

Scheduled for July 1975, the first international manned space mission would carry out experiments with astronauts and cosmonauts working together, in addition to testing the new docking systems and procedures. A three-module, two-man Soviet Soyuz was to be launched from the U.S.S.R.'s Baykonur Cosmodrome near Tyuratam on 15 July. Some hours later the modified Apollo command and service module with added docking module and a three-man crew would lift off on the Apollo-Skylab Saturn IB launch vehicle from Kennedy Space Center, to link up with the Soyuz. The cylindrical docking module would serve as an airlock for transfer of crewmen between the different atmospheres of the two spacecraft. After two days of flying joined in orbit, with crews working together, the spacecraft would undock for separate activities before returning to the earth.5

 

GEMINI. In 1961 planning was begun on an earth-orbital rendezvous program to follow the Mercury project and prepare for Apollo missions. The improved or "Advanced Mercury" concept was designated "Mercury Mark II" by Glenn F. Bailey, NASA Space Task Group Contracting Officer, and John Y. Brown of McDonnell Aircraft Corporation.1 The two-man spacecraft was based on the one-man Mercury capsule, enlarged and made capable of longer flights. Its major purposes were to develop the technique of rendezvous in space with another spacecraft and to extend orbital flight time.

NASA Headquarters personnel were asked for proposals for an appropriate name for the project and, in a December 1961 speech at the Industrial College of the Armed Forces, Dr. Robert C. Seamans, Jr., then NASA Associate Administrator, described Mercury Mark II, adding an offer of a token reward to the person suggesting the name finally accepted. A member of the audience sent him the name "Gemini." Meanwhile, Alex P. Nagy in NASA's Office of Manned Space Flight also had proposed " Gemini." Dr. Seamans recognized both as authors of the name.2

"Gemini," meaning "twins" in Latin, was the name of the third constellation of the zodiac, made up of the twin stars Castor and Pollux. To Nagy it seemed an appropriate connotation for the two-man crew, a rendezvous mission, and the project's relationship to Mercury. Another connotation of the mythological twins was that they were considered to be the patron gods of voyagers.3 The nomination was selected from several made in NASA Headquarters, including "Diana," "Valiant," and "Orpheus"....

 


[
105]

The Gemini 7 spacecraft was photographed from the window of Gemini 6 during rendezvous maneuvers 15 December 1965

.

 

Castor and Pollux, the Gemini of mythology, ride their horses through the sky (courtesy of the Library of Congress.)

 

.

The Gemini 7 spacecraft was photographed from the window of Gemini 6 during rendezvous maneuvers 15 December 1965. Castor and Pollux, the Gemini of mythology, ride their horses through the sky (courtesy of the Library of Congress.)


 

....from the Office of Manned Space Flight. On 3 January 1962, NASA announced the Mercury Mark II project had been named "Gemini."4

After 12 missions-2 unmanned and 10 manned-Project Gemini ended 15 November 1966. Its achievements had included long-duration space flight, rendezvous and docking of two spacecraft in earth orbit, extravehicular activity, and precision-controlled reentry and landing of spacecraft.

The crew of the first manned Gemini mission, Astronauts Virgil I. Grissom and John W. Young, nicknamed their spacecraft "Molly Brown." The name came from the musical comedy title, The Unsinkable Molly Brown, and was a facetious reference to the sinking of Grissom's Mercury-[106] Redstone spacecraft after splashdown in the Atlantic Ocean 21 July 1961. "Molly Brown" was the last Gemini spacecraft with a nickname; after the Gemini 3 mission, NASA announced that "all Gemini flights should use as official spacecraft nomenclature a single easily remembered and pronounced name."5

 


Astronaut Edward H. White floats in space, secured to the Gemini 4 spacecraft.

Astronaut Edward H. White floats in space, secured to the Gemini 4 spacecraft.

 

MERCURY. Traditionally depicted wearing a winged cap and winged shoes, Mercury was the messenger of the gods in ancient Roman and (as Hermes) Greek mythology. 1 The symbolic associations of this name appealed to Abe Silverstein, NASA's Director of Space Flight Development, who suggested it for the manned spaceflight project in the autumn of 1958. On 26 November 1958 Dr. T. Keith Glennan, NASA Administrator, and Dr. Hugh ....

 


[
107]

Full-scale mockups of the Mercury and Gemini spacecraft.

Full-scale mockups of the Mercury and Gemini spacecraft.

 

....L. Dryden, Deputy Administrator, agreed upon "Mercury," and on 17 December 1958 Dr. Glennan announced the name for the first time.2

On 9 April 1959 NASA announced selection of the seven men chosen to be the first U.S. space travelers, "astronauts." The term followed the semantic tradition begun with "Argonauts," the legendary Greeks who traveled far and wide in search of the Golden Fleece, and continued with "aeronauts"-pioneers of balloon flight.3 Robert R. Gilruth, head of the Space Task Group, proposed "Project Astronaut" to NASA Headquarters, but the suggestion lost out in favor of Project Mercury "largely because it [Project Astronaut] might lead to overemphasis on the personality of the man."4

In Project Mercury the United States acquired its first experience in conducting manned space missions and its first scientific and engineering knowledge of man in space. After two suborbital and three orbital missions, Project Mercury ended with a fourth orbital space flight-a full-day mission by L. Gordon Cooper, Jr., 15-16 May 1963.

In each of Project Mercury's manned space flights, the assigned astronaut chose a call sign for his spacecraft just before his mission. The choice of [108] "Freedom 7" by Alan B. Shepard, Jr., established the tradition of the numeral "7," which came to be associated with the team of seven Mercury astronauts. When Shepard chose "Freedom 7," the numeral seemed significant to him because it appeared that "capsule No. 7 on booster No. 7 should be the first combination of a series of at least seven flights to put Americans into space."5 The prime astronaut for the second manned flight, Virgil I. Grissom, named his spacecraft "Liberty Bell 7" because "the name was to Americans almost synonymous with 'freedom' and symbolical numerically of the continuous teamwork it represented."6

John Glenn, assigned to take the Nation's first orbital flight, named his Mercury spacecraft "Friendship 7." Scott Carpenter chose "Aurora 7," he said, "because I think of Project Mercury and the open manner in which we are conducting it for the benefit of all as a light in the sky. Aurora also.....

 


Astronaut John H. Glenn Jr., is hoisted out of the Friendship 7 spacecraft after splashdown in the Atlantic 20 February 1962. The god Mercury, poised for flight, at right (courtesy of the National Gallery of Art).

Astronaut John H. Glenn Jr., is hoisted out of the Friendship 7 spacecraft after splashdown in the Atlantic 20 February 1962. The god Mercury, poised for flight, at right (courtesy of the National Gallery of Art).

 

[109] .....means dawn-in this case the dawn of a new age. The 7, of course, stands for the original seven astronauts."7 Walter M. Schirra selected "Sigma 7" for what was primarily an engineering flight-a mission to evaluate spacecraft systems; "sigma" is an engineering symbol for summation. In selecting "sigma," Schirra also honored "the immensity of the engineering effort behind him." 8 Cooper's choice of "Faith 7" symbolized, in his words, "my trust in God, my country, and my teammates."9

 

SKYLAB. Planning for post-Apollo manned spaceflight missions evolved directly from the capability produced by the Apollo and Saturn technologies, and Project Skylab resulted from the combination of selected program objectives. In 1964, design and feasibility studies had been initiated for missions that could use modified Apollo hardware for a number of possible lunar and earth-orbital scientific and applications missions. The study concepts were variously known as "Extended Apollo (Apollo X)" and the "Apollo Extension System (AES)."1 In 1965 the program was coordinated under the name "Apollo Applications Program (AAP)" and by 1966 had narrowed in scope to primarily an earth-orbital concept.2

Projected AAP missions included the use of the Apollo Telescope Mount (ATM). In one plan it was to be launched separately and docked with an orbiting workshop in the "wet" workshop configuration. The wet workshop-using the spent S-IV B stage of the Saturn I launch vehicle as a workshop after purging it in orbit of excess fuel-was later dropped in favor of the " dry" configuration using the Saturn V launch vehicle. The extra fuel carried by the S-IV B when used as a third stage on the Saturn V, for moon launches, would not be required for the Skylab mission, and the stage could be completely outfitted as a workshop before launch, including the ATM.3

The name "Skylab," a contraction connoting "laboratory in the sky," was suggested by L/C Donald L. Steelman (USAF) while assigned to NASA. He later received a token reward for his suggestion. Although the name was proposed in mid-1968, NASA decided to postpone renaming the program because of budgetary considerations. "Skylab" was later referred to the NASA Project Designation Committee and was approved 17 February 1970.4

Skylab 1 (SL-1), the Orbital Workshop with its Apollo Telescope Mount, was put into orbit 14 May 1973. Dynamic forces ripped off the meteoroid shield and one solar array wing during launch, endangering the entire program, but the three astronauts launched on Skylab 2 (SL-2)-the first manned mission to crew the Workshop-were able to repair the spacecraft and completed 28 days living and working in space before their safe return.

 


[
110]

Skylab Orbital Workshop photographed from the Skylab 2 command module during fly-around inspection.

 

Skylab Orbital Workshop photographed from the Skylab 2 command module during fly-around inspection. The Workshop's remaining solar array wing, after second wing was ripped off during launch, is deployed below the ATM's four arrays. The emergency solar parasol erected by the astronauts is visible on the lower part of the spacecraft. The cutaway drawing shows crew quarters and work areas.

 

The cutaway drawing shows crew quarters and work areas.

 

[111] They were followed by two more three-man crews during 1973 . The Skylab 3 crew spent 59 days in space and Skylab 4 spent 84. Each Skylab mission was the longest-duration manned space flight to that date, also setting distance in-orbit and extravehicular records. Skylab 4, the final mission (16 November 1973 to 8 February 1974) recorded the longest in-orbit EVA (7 hours 1 minute), the longest cumulative orbital EVA time for one mission (22 hours 21 min in four EVAs), and the longest distance in orbit for a manned mission (55.5 million kilometers).

The Skylab missions proved that man could live and work in space for extended periods; expanded solar astronomy beyond earth-based observations, collecting new data that could revise understanding of the sun and its effects on the earth; and returned much information from surveys of earth resources with new techniques. The deactivated Workshop remained in orbit; it might be visited by a future manned flight, but was not to be inhabited again.

 

SPACE SHUTTLE. The name " Space Shuttle" evolved from descriptive references in the press, aerospace industry, and Government and gradually came into use as concepts of reusable space transportation developed. As early NASA advanced studies grew into a full program, the name came into official use.* 1

From its establishment in 1958, NASA studied aspects of reusable launch vehicles and spacecraft that could return to the earth. The predecessor National Advisory Committee for Aeronautics and then NASA cooperated with the Air Force in the X-15 rocket research aircraft program in the 1950s and 1960s and in the 1958-1963 Dyna-Soar ("Dynamic-Soaring") hypersonic boost-glide vehicle program. Beginning in 1963, NASA joined the USAF in research toward the Aerospaceplane, a manned vehicle to go into orbit and return, taking off and landing horizontally. Joint flight tests in the 1950s and 1960s of wingless lifting bodies-the M2 series, HL-10, and eventually the X-24-tested principles for future spacecraft reentering the atmosphere.

Marshall Space Flight Center sponsored studies of recovery and reuse of the Saturn V launch vehicle. MSFC Director of Future Projects Heinz H. Koelle in 1962 projected a "commercial space line to earth orbit and the....

 


[
112]

The Space Shuttle with booster jettison in the artist's conception

.

 

The Space Shuttle tank jettison in the artist's conception

.

The Space Shuttle lifts off in the artist's conception

 

The Space Shuttle lifts off in the artist's conception of missions of the 1980s, at left, with booster jettison and tank jettison following in sequence as the orbiter heads for orbit and its mission.

 

....moon," for cargo transportation by 1980 or 1990. Leonard M. Tinnan of MSFC published a 1963 description of a winged, flyback Saturn V.2 Other studies of "logistics spacecraft systems," "orbital carrier vehicles," and "reusable orbital transports" followed throughout the 1960s in NASA, the Department of Defense, and industry.

[113] As the Apollo program neared its goal, NASA's space program objectives widened and the need for a fully reusable, economical space transportation system for both manned and unmanned missions became more urgent. In 1966 the NASA budget briefing outlined an FY 1967 program including advanced studies of "ferry and logistics vehicles." The President's Science Advisory Committee in February 1967 recommended studies of more economical ferry systems with total recovery and rescue possibilities.3 Industry studies under NASA contracts 1969-1971 led to definition of a reusable Space Shuttle system and to a 1972 decision to develop the Shuttle.

The term "shuttle" crept into forecasts of space transportation at least as early as 1952. In a Collier's article, Dr. Wernher von Braun, then Director of the U.S. Army Ordnance Guided Missiles Development Group, envisioned space stations supplied by rocket ships that would enter orbit and return to earth to land "like a normal airplane," with small, rocket-powered "shuttle-craft," or "space taxis," to ferry men and materials between rocket ship and space station.4

In October 1959 Lockheed Aircraft Corporation and Hughes Aircraft Company reported plans for a space ferry or "commuter express," for " shuttling" men and materials between earth and outer space. In December, Christian Science Monitor Correspondent Courtney Sheldon wrote of the future possibility of a "man-carrying space shuttle to the nearest planets."5

The term reappeared occasionally in studies through the early 1960s. A 1963 NASA contract to Douglas Aircraft Company was to produce a conceptual design for Philip Bono's "Reusable Orbital Module Booster and Utility Shuttle (ROMBUS)," to orbit and return to touch down with legs [114] like the lunar landing module's. Jettison of eight strap-on hydrogen tanks for recovery and reuse was part of the concept.6 The press-in accounts of European discussions of Space Transporter proposals and in articles on the Aerospaceplane, NASA contract studies, USAF START reentry studies, and the joint lifting-body flights-referred to "shuttle" service, "reusable orbital shuttle transport," and "space shuttle" forerunners.**

In 1965 Dr. Walter R. Dornberger, Vice President for Research of Textron Corporation's Bell Aerosystems Company, published "Space Shuttle of the Future: The Aerospaceplane" in Bell's periodical Rendezvous. In July Dr. Dornberger gave the main address in a University of Tennessee Space Institute short course: "The Recoverable, Reusable Space Shuttle."7

NASA used the term "shuttle" for its reusable transportation concept officially in 1968. Associate Administrator for Manned Space Flight George E. Mueller briefed the British Interplanetary Society in London in August with charts and drawings of "space shuttle" operations and concepts. In November, addressing the National Space Club in Washington, D.C., Dr. Mueller declared the next major thrust in space should be the space shuttle.8 By 1969 "Space Shuttle" was the standard NASA designation, although some efforts were made to find another name as studies were pursued.9 The "Space Shuttle" was given an agency-wide code number; the Space Shuttle Steering Group and Space Shuttle Task Group were established. In September the Space Task Group appointed by President Nixon to help define post-Apollo space objectives recommended the U.S. develop a reusable, economic space transportation system including a shuttle. And in October feasibility study results were presented at a Space Shuttle Conference in Washington. Intensive design, technology, and cost studies followed in 1970 and 1971.10

[115] On 5 January 1972 President Nixon announced that the United States would develop the Space Shuttle.

The Space Shuttle would be a delta-winged aircraftlike orbiter about the size of a DC-9 aircraft, mounted at launch on a large, expendable liquid-propellant tank and two recoverable and reusable solid-propellant rocket boosters (SRBs) that would drop away in flight. The Shuttle's cargo bay eventually would carry most of the Nation's civilian and military payloads. Each Shuttle was to have a lifetime of 100 space missions, carrying up to 29 500 kilograms at a time. Sixty or seventy flights a year were expected in the 1980s.

Flown by a three-man crew, the Shuttle would carry satellites to orbit, repair them in orbit, and later return them to earth for refurbishment and reuse. It would also carry up to four scientists and engineers to work in a pressurized laboratory (see Spacelab) or technicians to service satellites. After a 7- to 30-day mission, the orbiter would return to earth and land like an aircraft, for preparation for the next flight.

At the end of 1974, parts were being fabricated, assembled, and tested for flight vehicles. Horizontal tests were to begin in 1977 and orbital tests in 1979. The first manned orbital flight was scheduled for March 1979 and the complete vehicle was to be operational in 1980.

 

SPACE TUG. Missions to orbits higher than 800 kilometers would require an additional propulsion stage for the Space Shuttle. A reusable "Space Tug" would fit into the cargo bay to deploy and retrieve payloads beyond the orbiter's reach and to achieve earth-escape speeds for deep-space exploration. Under a NASA and Department of Defense agreement, the Air Force was to develop an interim version-the "interim upper stage (IUS)," named by the Air Force the "orbit-to-orbit stage (OOS)," to be available in 1980. NASA meanwhile continued planning and studies for a later full-capacity Space Tug.11

Joseph E. McGolrick of the NASA Office of Launch Vehicles had used the term in a 1961 memorandum suggesting that, as capabilities and business in space increased, a need might arise for "a space tug-a space vehicle capable of orbital rendezvous and . . . of imparting velocities to other bodies in space." He foresaw a number of uses for such a vehicle and suggested it be considered with other concepts for the period after 1970. McGolrick thought of the space tug as an all-purpose workhorse, like the small, powerful tugboats that moved huge ocean liners and other craft. The name was used frequently in studies and proposals through the years, and in September 1969 the Presidential Space Task Group's recommendation for a [116] new space transportation system proposed development of a reusable, chemically propelled space tug, as well as a shuttle and a nuclear stage.12

LARGE SPACE TELESCOPE. Among Shuttle payloads planned-besides Spacelab and satellites like those launched in the past by expendable boosters-was the Large Space Telescope (LST), to be delivered to orbit as an international facility for in-orbit research controlled by scientists on the ground. The LST would observe the solar system and far galaxies from above the earth's atmosphere. On revisits, the Shuttle would service the orbiting telescope, exchange scientific hardware, and-several years later-return the LST to the earth.

LONG-DURATION EXPOSURE FACILITY. Another payload was to be placed in orbit for research into effects of exposure to space. The unmanned, free-flying Long-Duration Exposure Facility (LDEF) would expose a variety of passive experiments in orbit and would later be retrieved for refurbishment and reuse.

 

SPACELAB. A new venture in space flight made possible by the Space Shuttle, Spacelab was to be a reusable "space laboratory" in which scientists and engineers could work in earth orbit without spacesuits or extensive astronaut training. The program drew the United States and Europe into closer cooperation in space efforts.

The name finally chosen for the space laboratory was that used by the European developers. It followed several earlier names used as NASA's program developed toward its 1980s operational goal. In 1971 NASA awarded a contract for preliminary design of "Research and Applications Modules" (RAMs) to fly on the Space Shuttle. A family of manned or "man-tended" payload carriers, the RAMs were to provide versatile laboratory facilities for research and applications work in earth orbit. Later modules were expected to be attached to space stations, in addition to the earlier versions operating attached to the Shuttle. The simplest RAM mode was called a "Sortie Can" at Marshall Space Flight Center. It was a low-cost simplified. pressurized laboratory to be carried on the Shuttle orbiter for short "sortie" missions into space.1 In June 1971 the NASA Project Designation Committee redesignated the Sortie Can the "Sortie Lab," as a more fitting name.2

When the President's Space Task Group had originally recommended development of the Space Shuttle in 1969, it had also recommended broad international participation in the space program, and greater international cooperation was one of President Nixon's Space Policy Statement goals in March 1970. NASA Administrator Thomas 0. Paine visited European....

 


[
117]

A Spacelab module and pallet fill the payload bay of a scale-model Space Shuttle orbiter.

A Spacelab module and pallet fill the payload bay of a scale-model Space Shuttle orbiter. The laboratory module is nearest the cabin.

 

...capitals in October 1969 to explain Shuttle plans and invite European interest, and 43 European representatives attended a Shuttle Conference in Washington. One area of consideration for European effort was development of the Sortie Lab.3

On 20 December 1972 a European Space Council ministerial meeting formally endorsed European Space Research Organization development of Sortie Lab. An intergovernmental agreement was signed 10 August 1973 and ESRO and NASA initialed a memorandum of understanding. The memorandum was signed 24 September 1973. Ten nations-Austria, Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Switzerland, and the United Kingdom-would develop and manufacture the units. The first unit was to be delivered to NASA free in the cooperative program, and NASA would buy additional units. NASA would fly Spacelab on the Shuttle in cooperative missions, in U.S. missions, and for other countries with costs reimbursed.4

In its planning and studies, ESRO called the laboratory "Spacelab." And when NASA and ESRO signed the September 1973 memorandum on cooperation NASA Administrator James C. Fletcher announced that NASA's Sortie Lab program was officially renamed "Spacelab," adopting the ESRO name.5

[118] Spacelab was designed as a low-cost laboratory to be quickly available to users for a wide variety of orbital research and applications. Almost half the civilian Space Shuttle payloads were expected to fly in Spacelab in the 1980s. It was to consist of two elements, carried together or separately in the Shuttle orbiter: a pressurized laboratory, where scientists and engineers with only brief flight training could work in a normal environment, and an instrument platform, or "pallet," to support telescopes, antennas, and other equipment exposed to space.

Reusable for 50 flights, the laboratory would remain in the Shuttle hold, or cargo bay, while in orbit, with the bay doors held open for experiments and observations in space. Seven-man missions, many of them joint missions with U.S. and European crew members, would include a three-man Shuttle crew and four men for Spacelab. Up to three men could work in the laboratory at one time, with missions lasting 7 to 30 days. At the end of each flight, the orbiter would make a runway landing and the laboratory would be removed and prepared for its next flight. Racks of experiments would be prepared in the home laboratories on the ground, ready for installation in Spacelab for flight and then removal on return.6

One of the planned payloads was NASA's AMPS (Atmospheric, Magnetospheric, and Plasmas-in-Space) laboratory, to be installed in Spacelab for missions in space.7

At the end of 1974, life scientists, astronomers, atmospheric physicists, and materials scientists were defining experiment payloads for Spacelab. The first qualified flight unit was due for delivery in 1979 for 1980 flight. A European might be a member of the first flight crew.8

 


* In January 1975, NASA's Project Designation Committee was considering suggestions for a new name for the Space Shuttle, submitted by Headquarters and Center personnel and others at the request of Dr. George M. Low, NASA Deputy Administrator. Rockwell International Corporation, Shuttle prime contractor, was reported as referring to it as "Spaceplane." (Bernie M. Taylor, Administrative Assistant to Assistant Administrator for Public Affairs, NASA, telephone interview, 12 Feb. 1975; and Aviation Week & Space Technology, 102 [20 January 1975], 10.)

** The Defense/Space Business Daily newsletter was persistent in referring to USAF and NASA reentry and lifting-body tests as "Space Shuttle" tests. Editor-in-Chief Norman L. Baker said the newsletter had first tried to reduce the name "Aerospaceplane" to "Spaceplane" for that project and had moved from that to "Space Shuttle" for reusable, back-and-forth space transport concepts as early as 1963. The name was suggested to him by the Washington, D.C., to New York airline shuttle flights. (Telephone interview, 22 April 1975.)

Application of the word "shuttle" to anything that moved quickly back and forth (from shuttlecock to shuttle train and the verb "to shuttle") had arisen in the English language from the name of the weaving instrument that passed or "shot" the thread of the woof from one edge of the cloth to the other. The English word came from the Anglo-Saxon "scytel" for missile, related to the Danish "skyttel" for shuttle, the Old Norvegian "skutill" for harpoon, and the English "shoot." (Webster's International Dictionnary, ed.2 unabridged).


previousindexnext